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We consider an “impurity” with a spin degree of freedom coupled to a finite reservoir of noninteracting
electrons, a system which may be realized by either a true impurity in a metallic nanoparticle or a small
quantum dot coupled to a large one. We show how the physics of such a spin impurity is revealed in the
many-body spectrum of the entire finite-size system; in particular, the evolution of the spectrum with the
strength of the impurity-reservoir coupling reflects the fundamental many-body correlations present. Explicit
calculation in the strong- and the weak-coupling limits shows that the spectrum and its evolution are sensitive
to the nature of the impurity and the parity of electrons in the reservoir. The effect of the finite-size spectrum
on two experimental observables is considered. First, we propose an experimental setup in which the spectrum
may be conveniently measured using tunneling spectroscopy. A rate equation calculation of the differential
conductance suggests how the many-body spectral features may be observed. Second, the finite-temperature
magnetic susceptibility is presented, both the impurity and the local susceptibilities. Extensive quantum Monte
Carlo calculations show that the local susceptibility deviates from its bulk scaling form. Nevertheless, for
special assumptions about the reservoir—the “clean Kondo box” model—we demonstrate that finite-size scal-
ing is recovered. Explicit numerical evaluations of these scaling functions are given, both for even and odd
parities and for the canonical and the grand-canonical ensembles.
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I. INTRODUCTION

The Kondo problem describes a single magnetic impurity
interacting with a sea of electrons.1 At temperatures T on the
order of or less than a characteristic scale TK, the dynamics
of the impurity and the sea of electrons become inextricably
entangled, thus making Kondo physics one of the simplest
realizations of a strongly correlated quantum system. In its
original context, the impurity was typically an element of the
3d or the 4f series of the periodic table, embedded in the
bulk of a metal such as Cu with s conduction electrons. With
the subsequent development of fabrication and control of
microstructures and nanostructures, it was pointed out2,3 that
a small quantum dot with an odd number of electrons—small
enough that its mean level spacing �S is much larger than the
temperature—could be placed in a regime such that it be-
haves as a magnetic impurity.4–6 The first experimental
implementations of this idea were naturally made by con-
necting the “magnetic impurity” formed in this way to mac-
roscopic leads.6–9 The flexibility provided by the patterning
of two-dimensional electron gas makes it possible, however,
to design more exotic systems, by connecting the small mag-
netic impurity dot to larger dots playing the role of the elec-
tron reservoirs. Schemes to observe, for instance, two-
channel SU�2� �Refs. 10 and 11� or SU�4� �Refs. 12–19�
Kondo have been implemented.

When the bulk electron reservoir of the original Kondo
problem is replaced with a finite reservoir, two energy scales
are introduced: the Thouless energy ETh associated with the
inverse of the time of flight across the structure and the mean
level spacing �R.20–22 A natural question that arises is there-

fore how these two scales affect the Kondo physics under
investigation.

Because a quantum impurity problem has pointlike inter-
actions, the local density of states �loc���=������0��2���
−��� completely characterizes the noninteracting sea of elec-
trons ��� and �� are the one-body eigenvalues and eigen-
functions of the reservoir�. For T ,TK�ETh,�R, thermal
smearing washes out the effects of both mesoscopic fluctua-
tions and the discreteness of the reservoir spectrum. Indeed,
in this regime, one may safely approximate �loc by a constant
�0; the impurity behaves in much the same way as if it were
in an infinite reservoir. In contrast, when T ,TK�ETh,�R, the
impurity senses the finiteness of the reservoir through the
structure of �loc���. The presence of these energy scales
�which are ubiquitous20,21 in reservoirs made from quantum
dots� is hence an essential and interesting part of Kondo
physics in nanosystems and deserves to be understood
thoroughly.

The implications of a finite Thouless energy, and of the
associated mesoscopic fluctuations taking place in the energy
range �� ,ETh�, have been investigated mainly in the high-
temperature range T�TK, where a perturbative
renormalization-group approach is applicable23–27 �see also
related work28–30 in the context of weakly disordered sys-
tem�. Less is known about the implications of mesoscopic
fluctuations in the temperature range T	TK.

There is on the other hand already a much larger body of
work concerning the “clean Kondo box” problem,31 namely,
the situation where mesoscopic fluctuations are ignored �or
absent as may be the case in some one-dimensional models�,
and only the existence of a finite mean level spacing is taken
into account. Simon and Affleck32 and Cornaglia and
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Balseiro,33 for instance, considered how transport properties
are modified if one-dimensional wires of finite length are
inserted between the macroscopic leads and the quantum im-
purity. Ring geometries,34–37 including the configuration cor-
responding to a two-channel Kondo effect,37 have also been
investigated.

The basic Kondo box configuration, namely, a quantum
impurity connected to an electron reservoir with a finite
mean level spacing, turns out to be already a nontrivial prob-
lem and so has been investigated by various numerically
intensive techniques such as the noncrossing
approximation31 or the numerical renormalization group.38 In
Refs. 39 and 37 it was pointed out, however, that as only the
regime T
�R is affected by the finiteness of �, a lot of
physical insight could be obtained by the analysis of the
low-energy many-body spectrum of the Kondo box system
�i.e., the ground state and first few excited states�. An analy-
sis of these low-energy many-body spectra and of an experi-
mental setup in which it could be probed was given in Ref.
39.

In this paper, we would like on one hand to provide a
more detailed account of some of the analysis sketched in
Ref. 39, and furthermore to present an additional physical
application, namely, the low-temperature magnetic response
of the Kondo box system. �See also Ref. 40 for an analysis of
the addition energy of a Kondo box�.

Since our focus is the consequences of a finite �R, we
consider the simplest possible configuration: a double-dot
system with a small dot acting as the magnetic impurity and
a larger one playing the role of the electron reservoir, as
illustrated in Fig. 1. The Hamiltonian describing this double-
dot system is

HR-S = �
��

��c��
† c�� + EC�NR − ng

R�2 + Hint
K,A. �1�

Here c��
† creates a state ���r� with spin � and energy ��,

which is an exact one-body energy level in the bigger quan-
tum dot R. These states include all the effects of static dis-
order and boundary scattering. NR is the number operator for
electrons in the reservoir, ng

R is the dimensionless gate volt-
age applied to the large dot R, and EC is its charging energy.

As the charging energy is the leading interaction for elec-
trons in a finite system, we shall neglect all other interactions
among the electrons on R. �See, e.g., Refs. 40–42 for work
that includes interactions among electrons in R.� The last
term in Eq. �1� contains the description of the small dot and
the interaction between the dots.

We consider two models for the magnetic impurity quan-
tum dot and its interaction with the reservoir R. For most of
this paper, we use a “Kondo-like” model, which therefore
includes charge fluctuations only implicitly. In this case, the
smaller quantum dot is represented by a spin operator S. The
interaction with the screening reservoir R is given by the
usual Kondo interaction

Hint
K = JS · s�0� , �2�

describing the antiferromagnetic exchange interaction be-
tween the two dots, with s�0�= 1

2 f0�
† �� ���f0� being the spin

density in the large dot at the tunneling position r�0 and
f0�

† ������0�c�
† .

We also consider �see Sec. II� a multiorbital “Anderson-
type” model that explicitly includes the effect of charge fluc-
tuations on the quantum dot S,

Hint
A = �

m�

�m
d dm�

† dm� + �
m�

tm�f0�
† dm� + H.c.� + U�NS − ng

S�2.

�3�

Here the quantum dot S is described by a set of spin-
degenerate energy levels �m

d created by dm�
† , which couple to

the state f0�
† ������0�c��

† in R. Interactions are included
through the usual charging term of strength U, where NS

��m�dm�
† dm� and ng

S is the dimensionless gate voltage
applied to the small dot. When m takes only a single value,
this reduces to the usual single-level Anderson model. The
crucial feature of this model is that the R-S tunneling term
�proportional to t� involves only one state in the reservoir.

For temperature T much larger than not only the mean
level spacing �R but also the corresponding Thouless energy
of the reservoir dot, the discreetness of the spectrum as well
as mesoscopic fluctuations in R can be ignored. Thus one
expects to recover the traditional behavior of a spin-1/2
Kondo or Anderson model. If T
�R, however, significantly
different behavior is expected. A simplifying feature of this
limit is that many physical quantities can be derived simply
from properties of the ground state and low-lying excited
states.

To study the low-temperature regime, we shall therefore
in a first stage consider the low-energy �many-body� spec-
trum of Hamiltonian �1�. Specifically, in Sec. II we extend
�slightly� a theorem from Mattis43 that enables us to infer the
ground-state spin of the system. Using weak and strong-
coupling perturbation theory, we then construct in Sec. III
the finite-size spectrum of the Kondo problem in a box.

In a second stage, we consider a few observable quantities
that are derived simply from the low-energy spectra. We start
in Sec. IV with tunneling spectroscopy, obtained by weakly
connecting two leads to the reservoir dot �Fig. 1�. Using a
rate equation approach, we predict generic features in the
nonlinear I-V of our proposed device. We then address in

S

VBIAS

~JV
PINCH

R L2L1

FIG. 1. �Color online� A double-dot system, coupled very
weakly to leads �L1, L2�. In the Coulomb blockade regime, the
small dot S behaves like a magnetic impurity that is coupled to a
finite reservoir R provided by the large dot. The leads are used to
measure the excitation spectrum of the system.
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Sec. V the low-temperature magnetic response of the double-
dot system, and in particular discuss the difference between
local and impurity susceptibilities which, although essen-
tially identical for T��R, differ drastically when T
�R. A
further issue that we study is that the charging energy in R
fixes the number of electrons rather than the chemical poten-
tial; thus, the canonical ensemble must be used rather than
the grand-canonical one. The use of the canonical ensemble
accentuates some features in the susceptibility. Finally, we
conclude in Sec. VI.

II. GROUND-STATE THEOREM

We now prove an exact ground-state theorem for the mod-
els defined in Eqs. �1�–�3�: the ground-state spin of the sys-
tem is fixed and in particular cannot depend on the coupling
between the small dot and the reservoir. We give the value of
this ground-state spin in a variety of cases.

The theorem is mainly an extension of a theorem due to
Mattis.43 It relies on the fact that in a specially chosen many-
body basis, all the off-diagonal matrix elements of these
Hamiltonians are nonpositive. It is then possible to invoke a
theorem due to Marshall44,45 to infer the ground-state
spin—a proof of Marshall’s sign theorem is in the Appendix.

A. Kondo-type models

The starting point of the proof is the tridiagonalization of
the one-body Hamiltonian of the reservoir, HR. Beginning
with the state f0�, one rewrites HR as a one-dimensional
chain with only nearest-neighbor hopping.1,46 This transfor-
mation is illustrated in Fig. 2. In this one-body basis, the
“Kondo-type” model defined by �1� and �2� can be rewritten
as a sum of a diagonal and an off-diagonal part as follows:

HR-S = HD + HOD, �4�

HD = JSzsz�0� + �
i�

�i f i�
† f i� + EC�NR − ng

R�2, �5�

HOD = −
�J�
2

�S+s−�0� + H.c.� − �
i�

��ti,i+1�f i�
† f i+1� + H.c.� .

�6�

Condition 1 of the Marshall theorem requires us to find a
many-body basis in which all the off-diagonal matrix ele-
ments are nonpositive. Consider the following basis:

���� = �− 1�m−Sf iN↑
R↑

†
¯ f i1↑

† f j1↓
†

¯ f jN↓
R↓

† �0� � �m� �7�

with m as the quantum number of Sz of the local spin and the
site labels �positive integers� ordered according to i1	 . . .
	 iN↑

R and j1	 . . . 	 jN↓
R. Note that this basis is diagonal with

respect to both the total number of electrons in R, NR=N↑
R

+N↓
R, and the z component of the total magnetization, Stot

z

=m+ �N↑
R−N↓

R� /2.
The off-diagonal matrix elements come from two terms:

the spin-flip term and the fermion hopping. With regard to
the fermion hopping term, first, since the fermions have been
written as a one-dimensional chain, there is no sign from the
fermionic commutation relation. Additionally, one can use
the freedom to choose the phase that defines the one-body
states f i�

† to make the hopping integrals ti,i+1 negative. Since
the number of phases is the same as the number of hopping
integrals ti,i+1, all ti,i+1 can be made negative as in Eq. �6�.
This ensures that all off-diagonal matrix elements of the fer-
mion hopping term in the many-body basis �Eq. �7�� are
nonpositive. With regard to the spin-flip term, note that its
sign in HOD can be fixed by rotating the spin S by an angle 
about the z axis. In order to ensure that the off-diagonal
elements due to the spin-flip term are negative, we have to
include the additional phase factor �−1�m−S appearing in the
definition of the basis states in Eq. �7�.

Since the basis Eq. �7� is diagonal in NR and Stot
z , we will

work in a fixed �NR,Stot
z � sector. Condition �ii� of Marshall’s

theorem—connectivity of the basis states by repeated appli-
cation of HR-S—is easily seen to be satisfied for the “Kondo”
model for all J�0, in a given �NR,Stot

z � sector. However,
when J=0, condition 2 is violated: the impurity spin cannot
flip and hence some basis states in a �NR,Stot

z � sector cannot
be connected to each other by repeated applications of HR-S.

We have thus shown that the Kondo model satisfies the
two conditions of Marshall’s theorem in a given �NR,Stot

z �
sector. Now note that given NR and S, the competing spin
multiplets for the ground-state spin �Stot� can either be inte-
ger spin multiplets or half-integer spin multiplets. Suppose,
for instance, they are integer multiplets �this is true, e.g.,
when NR is odd and S=1 /2�. Marshall’s theorem guarantees
that in the Stot

z =0 sector the lowest eigenvalue can never have
a degeneracy; this ensures that in a parametric evolution
there can never be a crossing in the Stot

z =0 sector. Since each
competing multiplet has a representative state in the Stot

z =0
sector, we infer that the ground-state spin does not change as
the coupling J is tuned. This is true as long as we do not
cross the point J=0, because this point �as explained above�
violates condition 2 in the proof of the theorem. Hence the
ground-state spin can be different for ferromagnetic and an-
tiferromagnetic J, but it does not change with the magnitude
of the coupling: the ground-state spin for all J may hence be
inferred by lowest-order perturbation theory in J. The
ground-state spin for a few representative cases is displayed
in Table I.

α 0 α α ...1 2t t t01 12 23

α 0 α α ...1 2t t t01 12 23

0 1 32

J

J Spin−

Spin−

FIG. 2. �Color online� Mapping of the Kondo problem into a
spin chain with an impurity. The site “0” is the point in the bath that
interacts with the impurity and is used as the site to begin the
tridiagonalization of the one-body Hamiltonian of the bath. The
sites are labeled by the integer i; in the sequence they are generated
by the tridiagonalization procedure. After tridiagonalization, we are
left with noninteracting electrons that feel an on-site potential �i

and can hop only to the neighboring sites with amplitude ti,i+1.
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B. Anderson-type models

We can prove a similar theorem for the model defined by
Eqs. �1� and �3�. We begin by tridiagonalizing the electrons
in the reservoir R, as for the Kondo case. In addition we have
to tridiagonalize the electrons in the quantum dot S, a process

which begins with the state d̃0�= �1 / tR-S��mtmdm�
† , where

tR-S= ��mtm
2 �1/2. An organization of HR-S into diagonal and

off-diagonal parts then yields

HD = �
m,�

�m
d d̃m�

† d̃m� + U�NS − ng
S�2

+ �
i,�

�i f i�
† f i� + EC�NR − ng

R�2 �8�

HOD = − �tR-S��f0�
† d̃0� + H.c.� − �

m,�
��tm,m+1

d �d̃m�
† d̃m+1� + H.c.�

− �
i,�

��ti,i+1�f i�
† f i+1� + H.c.� . �9�

We note again that the sign of all the hopping integrals can
be fixed as displayed above by an appropriate selection of

the arbitrary phase that enters the definition of d̃m�
† and f i�

† .
The appropriate basis that has only nonpositive off-diagonal
matrix elements is then simply

���� = f iN↑
R↑

†
¯ f i1↑

† d̃kN↑
S↑

†
¯ d̃k1↑

† d̃l1↓
†

¯ d̃lN↓
S↓

† f j1↓
†

¯ f jN↓
R↓

† �0� .

�10�

The total number of particles is now Ntot=N↑
R+N↓

R+N↑
S+N↓

S,
and the z component of spin is Stot

z = �N↑
R+N↑

S−N↓
R−N↓

S� /2.
In the case of the Anderson-type model �1� and �3�, the

result for the ground-state spin is remarkably simple: the
ground-state spin has Stot=0 for Ntot even and Stot=1 /2 for
Ntot odd. There is no possibility of having a ground-state spin
other than the lowest.

III. FINITE-SIZE SPECTRUM

In this section, we outline the main features of the low-
energy finite-size spectrum for the Kondo problem �Eqs. �1�

and �2��. The basic idea is to use perturbation theory around
its two fixed points: at the weak-coupling fixed point �J=0�
expand in J, and at the strong-coupling fixed point expand in
the leading irrelevant operators �Nozières’ Fermi-liquid
theory�. We begin by analyzing the classic case of S=1 /2
with antiferromagnetic coupling, and then turn to the under-
screened Kondo problem realized by antiferromagnetic cou-
pling and S=1.

A. S=1 Õ2: Screened Kondo problem

Weak-coupling regime: in the weak-coupling regime de-
fined by �R�TK, given a realization of the reservoir R, we
can always make J small enough so that the spectrum can be
constructed through lowest-order perturbation theory. The
unperturbed system for N odd is shown schematically in Fig.
3�a�. At weak-coupling the eigenstates follow from using de-
generate perturbation theory in all the multiplets of the un-
perturbed system. The ground state and the first excited state
are obtained by considering the coupling

Htop = J���top
�0��2stop · S , �11�

where stop is the spin of the topmost �singly occupied� level
�top of the large dot. The ground state is therefore a singlet
�J�0� and the first excited state is a triplet with excitation
energy

�EST = J���top
�0��2 
 �R. �12�

The next excited states are obtained by creating an electron-
hole excitation in the reservoir �shown as a dashed arrow in
Fig. 3�a��. Combining the spin 1/2 of the reservoir with that
of the small dot, one obtains a singlet of energy 	�R sepa-
rated from a triplet by a splitting 	J�R /4, where we define
J=J� with �= 
����0��2� /�R being the mean local density of
states.

In the N even case depicted in Fig. 3�b�, the ground state
is trivially a doublet. The first excited eigenstate of the un-
perturbed system is an eightfold degenerate multiplet ob-
tained by promoting one of the bath electrons to the lowest
available empty state �shown as a dashed arrow in Fig. 3�b��.

TABLE I. Ground-state spins for different Kondo problems ac-
cording to the theorem combined with perturbation theory. Mar-
shall’s theorem adapted to the model defined by Eqs. �1� and �2�
says that the ground-state spin does not change in a parametric
evolution of the Hamiltonian. The only exception is the crossing of
the point J=0; hence, the sign of J appears in the table.

S J NR Spin of �G�

1/2 Anti Odd 0

1/2 Anti Even 1/2

1 Anti Even 1

1 Anti Odd 1/2

1/2 Ferro Odd 1

1/2 Ferro Even 1/2

S

b)a)

R R

αtop

S

FIG. 3. �Color online� Weak-coupling perturbation theory: sche-
matic illustration of the unperturbed system for �a� NR odd and �b�
NR even. The spin marked S is that of the small quantum dot while
the solid lines represent the spectrum of the �finite� reservoir. The
dashed lines show the lowest energy orbital excitation in each case;
note that in the even case, any excitation requires promoting an
electron to the next level and so involves a minimum energy of
order �R.
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As J is turned on, this multiplet gets split into two Stot
=1 /2 doublets and one Stot=3 /2 quadruplet. In general the
two doublets have lower �though unequal� energy than the
quadruplet.

Strong-coupling regime: for TK��R, on the other hand,
the impurity spin S is screened by the conduction electrons,
and we can use Nozières’ “Fermi-liquid” theory.47,48 In the
very strong-coupling limit, one electron is pulled out of the
Fermi sea to bind with the impurity; this picture essentially
holds throughout the strong-coupling regime.4,47,48 For N odd
�even� one ends up effectively with an even (odd) number of
quasiparticles that interact with each other only at the impu-
rity site through a repulsive effective interaction

UFL 	 ��R
2 /TK�n↑�0�n↓�0� , �13�

which is weak �TK��R�. The quasiparticles have the same
mean level spacing �R as the original electrons, but the spac-
ing between two quasiparticle levels is not simply related to
the spacing of the original levels in the chaotic quantum dot.
This case is illustrated in Fig. 4.

For N odd, the ground state is thus a singlet �as expected
from our theorem�, and the excitations start at energy 	�R
since a quasiparticle must be excited in the reservoir. The
first two excitations consist of a spin Stot=1 and a Stot=0.
Because the residual quasiparticle interaction is repulsive,
the orbital antisymmetry of the triplet state produces a lower
energy; the splitting is about 	�R

2 /TK.
In the N even case at strong coupling, there are an odd

number of quasiparticles in the reservoir, and so the ground
state is a doublet. The first excited multiplet must involve a
quasi-particle-hole excitation in the reservoir. There are two
such excitations that involve promotion by one mean level
spacing on average �either promoting the electron in the top
level up one, or promoting an electron in the second level to
the top level�. Thus, the first two excitations are doublets.

Crossover between weak and strong couplings: remark-
ably, the ordering of the Stot quantum numbers of the ground
state and two lowest excitations is the same in both the TK

��R and the TK
�R limits. It is therefore natural to assume
that the order and the quantum numbers are independent of
TK /�R. Thus we arrive at the schematic illustration in Fig. 5.

B. S=1: Underscreened Kondo problem

The theorem and perturbation theory analysis presented
above has an interesting generalization to the underscreened
Kondo effect, in which S�1 /2. We will consider for con-
creteness the case S=1. Note that the underscreened Kondo
effect has been realized experimentally in quantum dots.49

For N even and S=1, we find that the ground state for all
J has Stot=1. At weak coupling, this follows directly from
perturbation theory—the reservoir has spin zero and J is too
small to promote an electron, so the spin of the ground state
is just that of the small dot. The theorem then implies that
S=1 for all J. The first excited multiplet is at energy of order
�R. It splits into a singlet, two triplets, and a quintuplet; as J
increases, the singlet has the lowest energy because the cou-
pling is antiferromagnetic.

In the opposite limit of strong coupling, as J→�, one
electron from R binds to the impurity spin forming a spin-1/2
object. For J=�, this spin does not interact with the quasi-
particles in R; however, when J��, the flow to strong cou-
pling generates other irrelevant operators that connect the
spin to the quasiparticles. It is known from studies of the
underscreened Kondo problem that the leading irrelevant op-
erator is a ferromagnetic Kondo coupling50 �the sign of the
coupling follows heuristically from perturbation theory in
t /J�. However, since one of the electrons is bound to the
spin, there are an odd number of quasiparticles in the effec-
tive low-energy ferromagnetic Kondo description—the level
filling is as in Fig. 4�b�. Since the ferromagnetic Kondo
problem flows naturally to weak coupling,1 we are again jus-
tified in doing perturbation theory in the coupling, and so
recover that the ground state has Stot=1. From the small fer-
romagnetic coupling, we conclude that the first excited state
is a singlet separated from the ground state by an asymptoti-
cally small energy �as TK /�R→��. The next excited state
involves the promotion of a quasiparticle to the next level

S

b)a)

RR

S

FIG. 4. �Color online� Strong-coupling perturbation theory:
schematic illustration of the unperturbed system for �a� NR odd and
�b� NR even. For S=1 /2, a conduction electron is bound to the
impurity at strong coupling. This leaves effectively a gas of even
�odd� weakly interacting quasiparticles. We note here that in the
usual case of TK
D �bandwidth of the reservoir�, the formation of
a singlet between the impurity spin and the reservoir for TK��R is
a complicated many-body effect: it is not just a singlet between the
spin and the topmost singly occupied level, as is the case for very
weak coupling.

Eδ

S = 0

S = 1
δE

S = 3/2

S = 1/2

S = 1

S = 0 S = 1/2

S = 1/2

b) N = even

JJ

a) N = odd

FIG. 5. �Color online� Schematic of the energy eigenvalues of
the double-dot system as a function of the coupling J for �a� N odd
and �b� N even in the S=1 /2 antiferromagnetic coupling case. En-
ergy differences are shown with respect to the ground state which
therefore appears on the x axis. The relation to the double-dot ex-
periment in Fig. 1 is that the y axis here is like VBIAS and the x axis
is like VPINCH. The excitations will show up as peaks in the differ-
ential conductance G.
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within R and so has energy of order �R. It is a triplet because
of the ferromagnetic coupling, with a nearby singlet in the
strong-coupling limit. Note that there are two possible qua-
siparticle excitations with energy of order �R �as discussed
in the S=1 /2 case� and so two singlet-triplet pairs.

The proposed crossover from weak to strong coupling for
N even is shown in Fig. 6�a�. Note that in this case, level
crossings of excited states must occur: the two singlets at
energy of order �R at strong coupling come from energies
greater than �R at weak coupling and so cross the S=2 state.
The two singlet-triplet pairs at strong coupling are shown to
be slightly different because each involves a different level
spacing; thus, there is an additional level crossing as one of
the singlets comes below a triplet.

In the N odd case, weak antiferromagnetic coupling im-
plies that the ground-state spin is Stot=1 /2. The first excited
state is the other multiplet involving no excitations in the
reservoir, Stot=3 /2. The next excited states are the Stot=1 /2
and 3/2 states that involve promoting one electron by one
level. In the strong-coupling limit, we repeat the mapping to
a ferromagnetically coupled impurity, yielding this time an
even number of quasiparticles in the reservoir. Now the first
excited state involves promoting a quasiparticle in the reser-
voir by one level; the ferromagnetic coupling implies that the
Stot=3 /2 state has the lowest energy among the possible mul-
tiplets. Making again the reasonable assumption that the two
limits are connected to each other in the simplest manner
possible, we arrive at the schematic illustration in Fig. 6�b�.
In contrast to the N even case, no level crossings are defi-
nitely required.

We stress here that the evolution of the finite-size spectra
shown in Figs. 5 and 6 is totally different in each of the cases
illustrated. The finite-size spectrum is hence an interesting
way to observe the Kondo effect in nanosystems, with each
impurity problem having its own unique spectrum.

IV. NONLINEAR I-V CHARACTERISTICS
OF THE R-S SYSTEM

We now turn to the question of how to observe the fea-
tures of the finite-size spectrum delineated in the previous

section. Any physical observable depends, of course, on the
spectrum of the system and so could be used as a probe. We
choose to concentrate on two: �1� in the next section, we
discuss the magnetic susceptibility of the R-S system, a clas-
sic quantity in Kondo physics. �2� In this section we discuss
the conductance across the device shown in Fig. 1. The ad-
vantage of this physical quantity is that the finite-size spec-
trum can be observed directly in the proposed experiment.
The emphasis here is on transfer of electrons entirely by real
transitions; cotunneling processes, which involve virtual
states, are briefly discussed at the end of the section.

A current through the R-S system clearly involves number
fluctuations on it. For a general value of the gate voltage
�ng

R in Eq. �1��, however, the ground state will have a fixed
number of electrons, and hence G=0 �Coulomb blockade�.
When VBIAS=V1−V2 is increased sufficiently, the Coulomb
blockade is lifted, and G�VBIAS� has a sequence of peaks. It is
possible to extract the excitation spectrum of the R-S system
from the position of these peaks.51 In principle, there is a
peak in G for every transition �→� that involves a change
in N. As discussed in Sec. IV C we shall however choose a
particular setting such that only a limited number of these
transitions play a role, making in this way the reconstruction
of the underlying low-energy many-body spectra simpler.

A. Method

In order to describe transport through the R-S system �re-
alized through either a double dot or a metallic grain with a
single magnetic impurity�, we solve the appropriate rate
equations for the real transitions.51,52 The rate equations are a
limit of the quantum master equation in which the off-
diagonal elements of the density matrix are neglected. The
dynamics of the quantum dot can then be described simply
by the probability P� that the R-S system is in a given many-
body state �. In thermal equilibrium these P� are the Boltz-
mann weights. The electrons in the leads are assumed to
always be in thermal equilibrium; hence, the probability that
a given one-body state in the leads is occupied is given sim-
ply by the Fermi-Dirac function f����1 / �e�/T+1�. Here, � is
the deviation from the electrochemical potential EF+V1,2,
where V1 and V2 are the voltages on leads 1 and 2, respec-
tively.

Steady state requires that the P� are independent of time.
Hence, the various rates of transition from � to �, ���, must
balance, leading to a linear system for the P�,

�
�

���P� = �
�

���P�. �14�

In addition, the occupation probabilities should be normal-
ized, ��P�=1.

There are four transitions that have to be taken into ac-
count: addition or removal of an electron from lead L1 or L2.
We denote the rates for these four processes as ���

�L1,L2, and
the ��� in Eq. �14� are sums of these four transition rates.
Once we have P� from Eq. �14�, the current is simply

Eδ δE

S = 1/2

JJ

a) N = even b) N = odd

S = 1

S = 0 S = 3/2

S = 1/2
S = 3/2

S = 0

S = 1

S = 2

FIG. 6. �Color online� Schematic illustration of the finite-size
spectrum of the underscreened Kondo problem S=1, with antifer-
romagnetic coupling, for �a� N even and �b� N odd. In each panel
we show all the excitations up to order �, both at strong and weak
couplings. When it seems plausible, we have connected the strong-
and the weak-coupling limits; note the necessity of crossings among
the excited states in �a�.
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I2 �
dN2

dt
= �

�,�
����

+L2 − ���
−L2�P�. �15�

The conductance G then follows by differentiating I�VBIAS�.
The rates ��� can be calculated in second-order perturba-

tion theory in the reservoir-lead coupling term, using Fermi’s
golden rule.51 For example, consider the addition of an elec-
tron to R-S from L1 corresponding to a transition ��N�
→��N+1� on R-S,

���
+L1 =

2V1
2

�
� d� ����f�����E� − E� − � − V1�

= �1f�E� − E� − V1� , �16�

where �1,2=2V1,2
2 ��EF� /�. V1 is the amplitude for the

above process. Although, in general it will have some depen-
dence on � and � as well as the coupling J, we will ignore
such dependence here. We will, however, retain the distinc-
tion between V1,2 and allow these to be tuned by the gates
that define the R-L1 and the R-L2 junctions.

To summarize our approach, to find the conductance in
the proposed tunneling experiment, we have solved the rate
equations for transferring an electron from lead 1 to the res-
ervoir and then to lead 2.51,52 We assume that �1� the cou-
pling of the lead to each state in R is the same �mesoscopic
fluctuations are neglected�, �2� the Kondo correlations that
develop in R-S do not affect the matrix element for coupling
to the leads,53 �3� there is a transition rate �rel that provides
direct thermal relaxation between the eigenstates of R-S with
fixed N, �4� the electrons in the lead are in thermal equilib-
rium, and �5� the temperature T is larger than the widths
�1 ,�2 of the R-S eigenstates due to L1 and L2.

B. Magnetic field

A Zeeman magnetic field BZ can be used as an effective
probe of the various degeneracies of the R-S system. We
shall assume that the magnetic field does not couple to the
orbital motion of the electrons,

HZ = − g�BBZ · S . �17�

This can be achieved in the semiconductor systems by ap-
plying the field parallel to the plane of motion of the elec-
trons. The effect of an orbital magnetic field in ultrasmall
metallic grains is argued to be small in Ref. 51 for moderate
fields.

We may neglect the effect of BZ on the lead electrons: the
only characteristic of the lead electrons appearing in the rate
equation calculations is the density of states at EF. All that
BZ does to the lead electrons is to make the modification
��EF�→��EF�g�BBZ /2�. Since the band is flat and wide
�on the scale of BZ� to an excellent approximation, this has
no effect.

The effect of BZ on the R-S system is complicated if the g
factors for the S and the R electrons are different, as would
be the case for a magnetic impurity in a metallic nanopar-
ticle. If we assume, however, that the g factors for the elec-
trons on the S and the R systems are the same, as is relevant
for the semiconductor quantum dot case illustrated in Fig. 1,

then HZ becomes simply −g�BBZStot
z . The energy of a given

many-body level � is then E�−g�BBZStot
z , where Stot

z is the
corresponding eigenvalue of the many-body state.

C. Application to the R-S system

To identify characteristic features in the transport proper-
ties, let us analyze a situation in which only a limited number
of transitions show up.51 For a S=1 /2 Kondo problem, the
most interesting features appear in the spectrum when there
is an odd number of electrons in the reservoir. These states
appear clearly when an electron is added to an N even res-
ervoir and the parameters are such that the excited states of
the N+1 electron reservoir dominate.

We thus consider the following situation: for zero bias,
assume that the R-S system is brought into a Coulomb block-
ade valley, not far from the N→N+1 transition. This could
be done by adjusting V1 and V2 in the setup of Fig. 1 �with
V1=V2�, or more realistically with the help of the additional
gate voltage ng

R in Eq. �1�. We take this setup as the origin of
the bias potentials �V1=V2=0�. Upon applying a bias V1
�V2, electrons flow from lead 1 to lead 2.

We assume that the rates �1,2 are sufficiently small that
virtual processes �cotunneling� can be entirely neglected for
this section �but relax this assumption below in Sec. IV E�;
that is, all relevant transitions occur on shell and can be
described by the Fermi golden rule expression �16�. Further-
more, we take �2��1. Because V1�V2, this means that it
takes much more time to add an electron to the dot than to
empty it. Thus, the dot tends to be occupied by N electrons.

Several conditions are needed in order to restrict the dis-
cussion to just the lowest-lying states of the system. First, we
shall assume that T
�R, so that in equilibrium only the
ground-state S=1 /2 doublet, with energy EG�N�, needs to be
considered. In a nonequilibrium situation, however, higher
excited states Ei�N�	�R can also be populated: the excess
energy of the electron supplied by the bias can be used to
leave the dot in an excited state. Apart from the ground-state
doublet, we take all excited states Ei�N� to be higher in en-
ergy than EG�N+1�.54 Then, if an excited state is populated,
it will quickly relax to an energy below EG�N+1� through a
rapid exchange of particles back and forth between the dot
and lead 2 ��2��1�. Because off-shell processes are as-
sumed negligible, this relaxation will stop as soon as an
N-electron state Ei�N� below EG�N+1� is reached. We as-
sume that the energy of the first excited S=1 /2 doublet,
E1�N�, is large enough that E1�N�+V2�EG�N+1��EG�N�
+V2. Then only the N-electron ground-state multiplet needs
to be retained in the calculation.

With regard to the �N+1�-electron states, we limit our-
selves to a small enough bias such that only transitions to the
three lowest excited multiplets need to be taken into account.
In this way, only a small number of transitions will show up
in the excitation spectrum, making it relatively simple to
analyze.51

When a magnetic field is applied, note the following un-
usual behavior: since there is no way to decay from the Sz
=−1 /2 state to the Sz=+1 /2 state of the lowest doublet with-
out involving virtual processes explicitly neglected here, the
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doublet will remain out of equilibrium: the Sz=−1 /2 state
can be significantly populated even though g�BBZ�kBT.

D. Results for G

With the above assumptions, results for the differential
conductance are shown in Fig. 7. We assumed that the sys-
tem parameters �gate potential, V1, V2, and �EST� are such
that the first three states of the �N+1�-electron system coin-
cide with the ground state of the N-electron system for
VBIAS=1, 2, and 3, respectively, at B=0. �See Fig. 4 of Ref.
39 for dI /dV in the B=0 case.� We are thus assuming that the
excited triplet state lies midway between the two lowest sin-
glet states �see Fig. 5�, placing ourselves in the middle of the
crossover regime.

First, note that the ground state to ground-state transition,
S=1 /2→S=0, yields only one peak even at nonzero BZ.
This is because the Sz=−1 /2 state of the doublet cannot be
populated before some current is flowing through the R-S
system �kBT /g�BBZ=0.2
1�. However, after the first tran-
sition, the N+1 state can decay into the Sz=−1 /2 state.
Hence, we expect the higher S=1 /2→S=0 transitions to
split in a magnetic field as in Fig. 7.

The next feature to understand is the two S=1 /2→S=1
transitions. These two peaks occur because out of the six
transitions between the multiplets, two are forbidden by spin
conservation and the other four split into two degenerate
sets.

How is one then to distinguish between a S=0 and a S
=1 state since they both split into two as a function of BZ?

One possible method is to observe the peak heights in
G�VBIAS� keeping BZ fixed. These are plotted in Fig. 7 for a
variety of �2 /�1.55 A clear feature is that the two S=1 /2
→S=0 peaks are very asymmetric, while S=1 /2→S=1 are
almost symmetric. This is for a robust physical reason: each
S=1 peak gets contributions from both Sz=1 /2 and −1 /2
initial states, while in the S=0 transition each peak gets a
contribution from only one: the Sz=1 /2 for the taller peak
and Sz=−1 /2 for the shorter one. The associated probabili-
ties, P↑ and P↓, are shown in the lower panel of Fig. 7. Thus
the peak heights in the S=1 transitions are insensitive to the
difference between the probability of occupation of the two
states in the doublet, while the peak heights in the S=0 tran-
sitions are sensitive to this difference.

E. Energy relaxation

In any real system, there are mechanisms of energy relax-
ation beyond the energy conserving exchange of electrons
with the leads that is given by the rate equations. These
mechanisms can involve, for instance, interactions with
phonons or, more simply, higher-order virtual processes be-
tween the R-S system and the leads that are neglected in the
Fermi’s golden rule approach �16�. These relaxation pro-
cesses are particularly important for the second S=1 /2→S
=0 transition. If the system is in perfect thermal equilibrium,
this transition should yield a single peak, even in the pres-
ence of a BZ�0. The second peak is suppressed even if only
on-shell processes are taken into account, as discussed
above, but explicit energy relaxation causes this suppression
to be more pronounced.

To model energy relaxation, we include a transition rate
between the Sz= �1 /2 states that satisfies detailed balance
�i.e., with Boltzmann weights�,

��� = �rel
e−��/T

e−��/T + e−��/T , �18�

where �� is the energy eigenvalue of the �th state.
The effect of this term is shown in Fig. 8. Clearly as the

relaxation rate is increased, the peak in the second S=1 /2
→S=0 transition coming from nonequilibrium effects is sup-
pressed further. Note, however, that the heights of the S
=1 /2→S=1 transition are unaffected �in both relative and
absolute magnitudes�.

F. Cotunneling spectroscopy

While the approach proposed above should be reasonably
simple to implement, because the excitations of both the N-
and �N+1�-electron systems may come into play, the result-
ing experimental conductance curves may in some circum-
stances be nontrivial to interpret. Therefore, we mention,
without going into detail, an alternative way to extract the
excitation spectra from the differential conductance. Al-
though within the “Coulomb blockade diamond,” on-shell
processes such as the ones considered above are forbidden
by energy conservation constraints, a small current can nev-
ertheless be measured, which is associated with virtual �co-
tunneling� processes.56

FIG. 7. �Color online� Illustrative calculation of transport spec-
troscopy starting from the ground state of a N even Kondo R-S
system. Transitions are S=1 /2→S=0,1 as marked. Top panel: the
differential conductance as a function of bias voltage for different
values of the asymmetry between L ,R tunneling rates. Bottom
panel: the probability of occupation of the two states forming the
S=1 /2 ground state. For large asymmetries P↑+ P↓�1, as ex-
pected. Even though kBT /g�BBZ=0.2
1, P↓ is large because this
calculation neglects inelastic relaxation on the R-S system, allowing
it to stay well out of equilibrium. �1=0.01, g�BBZ=0.4, and
�2 /�1=10, 3, and 1 from top to bottom �Ref. 55�.
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At very low bias, these virtual processes are necessarily
elastic as the electron transferred from one lead to the other
does not have enough energy to leave the R-S system in an
excited state. However, each time VBIAS reaches a value cor-
responding to an excitation energy of the system with N
electrons, a new “inelastic” channel is open, as the electron
has the option to leave the R-S system in an excited state as
it leaves the structure. The opening of these new channels
produce steps in the differential conductance within the Cou-
lomb diamond. These steps are small, but clearly observable
experimentally.57–59

Because of the smallness of the associated currents, ob-
serving this substructure within the Coulomb diamond is cer-
tainly more challenging experimentally than for observing
the main peaks associated with on-shell processes. On the
other hand, the time elapsed between the successive transfers
of an electron across the structure is large enough that the
initial state of the N-particle system is always the ground
state. If they can be measured accurately, the cotunneling
steps within the Coulomb diamond may therefore lead more
directly to the N-particle excitation spectra.

Summarizing this section, we have shown in detail how
dI /dV measurements enable one to extract the finite-size
spectrum and spin quantum numbers of the R-S system, us-
ing the case when the ground state has an even number of
electrons as an example. In particular, we argued that the
relative peak height of the Zeeman split terms �BZ�0� re-
flects the spin quantum number of the excitation: asymmetric
peak heights correspond to S=0, whereas symmetric peak
heights correspond to S=1. The case when N is odd is
straightforward to analyze in a similar way. Transitions from

S=0 to S=1 /2 or 3/2 can easily be distinguished: the former
splits into two in a magnetic field while the latter splits into
four.

V. MAGNETIC RESPONSE OF THE DOUBLE-DOT
SYSTEM

We turn now to studying a second physical observable
which probes the finite-size spectrum of the system, namely,
the magnetic susceptibility defined by

� =
1

�

�2 ln Z

�B2 , �19�

where Z is the canonical or the grand-canonical partition
function depending on the ensemble considered. As in Sec.
IV, we assume that the magnetic field is in plane, so that only
the Zeeman coupling needs to be considered �Eq. �17��. We
furthermore distinguish between the local susceptibility �loc,
corresponding to the case where B couples only to the quan-
tum impurity spin �S�S�, and the situation where B couples
to the total spin of the R-S system �S�Stot�. In the latter
case, the impurity susceptibility �imp is defined as the differ-
ence �tot−�0 between the total magnetic response and that of
R in the absence of the impurity dot.

For a wide �D�TK� and flat �T�ETh
R ,�R� band the local

and the impurity susceptibilities are essentially identical.60

Indeed the effect of the magnetic field on the reservoir elec-
trons is just to shift the energies of the spin-up electrons with
respect to the spin down by a fixed amount. If the spectrum
is featureless, this only affects in practice the edge of the
band, which in the limit J�J�→0 and D→� with fixed TK
will not affect the Kondo physics. More precisely, for small
but finite J� �and again for a wide flat band� the impurity
susceptibility, being associated with the correlator of a con-
stant of the system, can be written as

TK�imp = f��T/TK� + O�TK/D� , �20�

where f� is a universal function of the ratio �T /TK�. On the
other hand, since the spin S of the impurity is not conserved,
a multiplicative renormalization factor z�loc

needs to be
introduced for the local susceptibility, so that TK�loc
=z�loc

f��T /TK�. For z�loc
we use a form motivated by two-

loop renormalization, 1 /z�loc
=1−J+�J2 for J
1, with the

coefficient of the quadratic term determined empirically, �
=−0.4. �For a discussion of z�loc

in the context of two-loop
renormalization, see, e.g., Ref. 61.� We note here that in the
universal regime TK /D→0, one also has J→0 and hence
z�loc

→1. In practical numerics, even though TK /D is small
enough that the O�TK /D� correction can be neglected, J
1 / ln�D /TK� need not be as small; hence, it is necessary to
include the prefactor correction z�loc

to observe good scaling
behavior.

In the regime T
�R that we consider here, however, the
reservoir electron spectrum is not featureless near the Fermi
energy, and the Zeeman splitting of the conduction electrons
affects in practice the whole band, and not just the band
edge. One therefore does not particularly expect any simple
relation between the local and the impurity susceptibilities.

FIG. 8. �Color online� Transport spectroscopy with energy re-
laxation included. �2 /�1=10 �fixed�, the parameter �rel that models
energy relaxation varies, and other parameters are as in Fig. 7. Top
panel: the differential conductance as a function of bias voltage.
Note how the symmetry of the S=1 /2→S=1 peaks is unaffected
while the S=1 /2,Sz=−1 /2→S=0 transition is suppressed �this
transition would completely vanish if the R-S system were in ther-
mal equilibrium�. Bottom panel: the probability of occupation of the
two states forming the S=1 /2 ground state. As �rel is increased, the
R-S system has a larger probability to occupy its ground state �Sz

=1 /2�.
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We now discuss the behavior of these quantities in this re-
gime. We start with the canonical ensemble, for which the
number of particles N, and therefore the parity of N, is fixed.
We will consider in a second stage the grand-canonical en-
semble and so neglect charging effects in the reservoir �EC
=0 in Eq. �1��; in this case the spin degeneracy induces finite
fluctuations of the particle number even in the zero-
temperature limit.

A. Canonical ensemble

Since Stot
z is a good quantum number, the impurity suscep-

tibility in the canonical ensemble follows immediately from
the information contained in Fig. 5, i.e., from the knowledge
of the total spin and the excitation energy of the first few
many-body states. Neglecting all the levels with an excita-
tion energy of order �R �because T
�R�, we simply get for
�tot a spin-1/2 Curie law for even N, and a spin-1 Curie law
damped by exp�−��EST� for odd N. In this latter case, the
magnetic response in the absence of the impurity is also a
spin-1/2 Curie law; thus, for �EST
�R one finds

�imp = ��
�g�B�2

4
, N even

��g�B�2�2 exp�− ��EST� − 1
4� , N odd.

�
�21�

The local susceptibility on the other hand involves S,
which is not a conserved quantity. Its computation therefore
requires the knowledge of the eigenstates, in addition to the
eigenenergies and the total spin quantum numbers contained
in Fig. 5. We can follow the same approach used in Sec. III
and analyze the two limiting regimes of coupling between
the reservoir and the impurity quantum dot. We will then use
a numerical Monte Carlo calculation in the intermediate re-
gime and investigate how well it is described by a smooth
interpolation between the two limiting regimes.

In the weak-coupling regime, TK
�R, we assume that
even if some renormalization of the coupling constant J
takes place, the eigenstates are the ones obtained from first-
order perturbation theory in this parameter. For even N at
T
�R, the impurity spin decouples from the �frozen� elec-
tron sea, and one obtains again a spin-1/2 Curie law. For odd
N at T
�R, the system formed by the impurity spin and the
singly occupied orbital decouples from the set of doubly oc-
cupied levels. The magnetic response is the same as for two
spin-1/2 particles interacting through Eq. �11�. We thus ob-
tain

�loc = ��
�g�B�2

4
, N even

�g�B�2e−��EST

1 + 3e−��EST
� e+��EST − 1

2�EST
+

�

2
� , N odd �

�22�

valid for TK
�R.
Turning now to the strong-coupling regime, we follow

Nozières’ Fermi-liquid picture,47,48 where low-energy states
��� �with E�
TK� are constructed from quasiparticles

which interact locally according to Eq. �13�. In a local mag-
netic field, the energy of a state ��� is modified to

E��B� = �g�BBZ�
��Sz��� − �g�BBZ�2 �
���

�
��Sz����2

E� − E�

,

�23�

where the sum is over all the many-body excited states �.
The first term in this expression yields the effect of a change
in the quasiparticle phase shift on the energy. It is important
when N is even: one of the quasiparticle states is singly
occupied, and its energy is shifted by an amount
	�g�BBZ /TK��R. Thus the system acts like a spin-1/2 par-
ticle with an effective g factor given by g�R /TK. The result
is a weak Curie susceptibility 	�g�B�R /TK�2 /4T at low
temperature.

The second term captures the effect of electron-hole qua-
siparticle excitations. It produces a nonzero contribution
even when the discreteness of the spectrum is ignored, as
may be seen as follows. First, the density of states of
particle-hole excitations of energy �E in a Fermi liquid is
proportional to �E. In a Kondo state, the density of single-
particle states is increased by a factor of 1 /TK because of the
Kondo resonance. Thus we may replace the sum in Eq. �23�
with an integral using a density of states proportional to
	�E /TK

2 . The integral should be cut off at an energy of
order TK, where the Kondo resonance ends. Thus the second
term in Eq. �23� gives a contribution 	�g�BBZ�2 /TK to the
energy, and a corresponding contribution 	�g�B�2 /TK to
�loc.

Note that this second contribution is independent of the
finite-system parameter �R and so is the universal �bulk� part
of the local susceptibility.62 It should behave smoothly as
T /�R becomes smaller than 1. In particular, if one considers
a system without mesoscopic fluctuations �i.e., with constant
spacings and wave function amplitudes at the impurity�, we
expect to recover the bulk behavior TK�loc=z�loc

f��T /TK� for
�R /TK→0. For N even this relation holds only if the weak
Curie behavior of the first term is not too large; more pre-
cisely, we expect �loc to follow the universal behavior as
long as T��R

2 /TK.
With these arguments, we have thus arrived at a complete

description of the magnetic susceptibility in both the weak-
and the strong-coupling limits for the canonical ensemble.
Note in particular the difference in the conditions for having
�loc→�bulk from those for having �imp→�bulk. Both limits
hold in the regime T��R no matter what the value of TK is.
However in addition, �loc→�bulk for any T as long as
�R /TK→0.

B. Grand-canonical ensemble

The use of the grand-canonical ensemble �which involves
neglecting charging effects in the reservoir, EC=0 in Eq. �1��
introduces additional complications compared to the canoni-
cal ensemble case above. To illustrate, recall first the behav-
ior in the absence of the impurity, i.e., for a system of inde-
pendent particles occupying doubly degenerate states ��. For
T��R in the grand-canonical ensemble, the magnitude of
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the fluctuation of the number of particles will be significantly
larger than 1. Thus, even if the canonical ensemble result for
N even is quite different from that for N odd �Eqs. �21� and
�22��, such an odd-even effect would be completely washed
out here: independent of the choice of the chemical potential
�, configurations with odd or even N would be as probable.

In the low-temperature regime on the other hand, as soon
as T
min����−���� �which is usually 	�R�, there is a fixed
even number of particles in the system. It is possible to make
the average number of particles odd by choosing �=��F

for
some orbital �F. In that case, as T /�R→0, all orbitals �
	�F are doubly occupied, all orbitals ���F are empty, and
independent of T the orbital �F has probabilities of 1/4 to be
empty, 1/4 to be doubly occupied, and 1/2 to be singly oc-
cupied. For quantities showing some odd-even effect in the
canonical ensemble but no strong dependence on N once the
parity is fixed �such as the local susceptibility�, the grand-
canonical ensemble produces a behavior, which is the aver-
age of the odd and even canonical response, even though the
mean number of particles 
N� is odd.

Turning now to the full R-S system, the above noninter-
acting picture should certainly still hold in the weak-
coupling regime. If, either by adjusting � or by making use
of some symmetry of the one-particle spectrum, 
N� is kept
fixed with an even integer value as T
�R; one should re-
cover the canonical magnetic response for even N. In con-
trast, the magnetic response for odd 
N� should be the aver-
age of the canonical odd and even responses.

In the strong-coupling regime �following again Nozières’
Fermi-liquid description�, one also has an essentially nonin-
teracting picture, but with effectively one less particle since
one reservoir electron is used to form the Kondo singlet. The
role of “odd” and “even” are then exactly reversed from the
weak-coupling case: for T
�R the grand-canonical response
will be the average of the canonical odd and even response
for even 
N� and will be exactly the canonical response for
odd 
N�.

C. Universality in a clean box

The previous discussion mainly addressed the two limit-
ing behaviors: weak and strong couplings. To investigate the
intermediate regime, we now turn to numerical calculations.
In particular, we use the efficient continuous-time quantum
Monte Carlo �QMC� algorithm introduced in Ref. 26, with in
addition adaptations to compute quantities in the canonical
ensemble.63 We study the behavior of the singlet-triplet gap
�EST and the local susceptibility �loc; the impurity suscepti-
bility �imp follows directly from �EST.

To focus on the consequences of the discreetness of the
one-particle spectrum while avoiding having to explore an
excessively large parameter space, we disregard the mesos-
copic fluctuations of the spectrum and the wave functions.
That is, we consider the simplified “clean Kondo box”
model31–33 defined by ���0����R and ��+1−����R inde-
pendent of �. For initial results for the more realistic “me-
soscopic Kondo model,” see Refs. 25 and 26.

Under these conditions, the problem is described by only
three dimensionless parameters: the coupling J=J� and the

two energy ratios D /�R and T /�R. For small J and large D
���R,T�, J and D can be scaled away in the usual manner
so that, except for renormalization prefactors such as z�loc
which may still contain some explicit dependence on J,
physical quantities depend on J and D only through the
Kondo temperature TK.

We therefore expect, again up to the factor z�loc
, that both

susceptibilities for the clean Kondo box model will be uni-
versal functions of the two parameters T /�R and TK /�R.
This function may, however, be different for the local and the
impurity susceptibilities and will also depend on the parity
and the type of ensemble considered.

Before discussing how well the limiting behaviors dis-
cussed above describe the whole parameter range, we shall
first check that our numerics confirm the expected universal-
ity. For the impurity susceptibility, since Eq. �21� is valid in
the full range of coupling as long as T
�R, we only need to
verify that for N odd the singlet-triplet excitation energy
�EST is, as expected from the same argument, a universal
function of �TK /�R�: �EST /�R=F�TK /�R� with the limiting
behaviors

F�x� � �1, x � 1

− 1/ln�x� , x 
 1.
� �24�

The strong-coupling behavior follows directly from the dis-
cussion in Sec. III A. The scaling behavior of FST at weak
coupling can, on the other hand, be obtained from a pertur-
bative renormalization-group argument: in the perturbative
expression for �EST �12�, replace the coupling constant J
with its renormalized value Jeff at the scale �R. Within the
one-loop approximation, Jeff=J / �1−J ln�D /�R�� yields

�EST �
J�R

1 − J ln�D/�R�
. �25�

Substituting the one-loop expression for the Kondo tempera-
ture, TK=D exp�−1 /J�, now yields the second line of Eq.
�24�.

In the crossover regime, we find F�x� through continuous-
time QMC calculations using a modification of the algorithm
presented in Ref. 26 with updates which maintain the
number of particles �canonical ensemble�.63 To extract �EST,
we measure the fraction P of states with �Stot

z �2=1 visited in
the Monte Carlo sampling at temperature T. For a fixed J
and large �=1 /T, P��� can be excellently fit to the form
2 / �3+e��EST� valid for a two-level singlet-triplet system. Re-
peating this procedure yields �EST for a variety of J and �R.

Figure 9 shows the results of our calculations, plotted as a
function of TK /�R. We emphasize three features: �i� the inset
shows that the fit of our QMC data to the simple two-level
singlet-triplet form is indeed very good. �ii� The limiting
behaviors of Eq. �24� are clearly seen. �iii� Data for a wide
variety of bare parameters are shown; the excellent collapse
onto a single curve in the main figure is a clear demonstra-
tion of the expected universality.

We now turn to the local susceptibility and explore the
expected scaling ansatz
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z�loc

−1 TK�loc = f� T

�R
,

T

TK
� . �26�

For variety, we use the grand-canonical ensemble. By fixing
the chemical potential in the middle of the spectrum of the
reservoir, particle-hole symmetry ensures that even in the
presence of the Kondo coupling the mean number of par-
ticles 
N� has a fixed parity: if � is aligned with a level, 
N�
is odd, while if � falls exactly between two levels, 
N� is
even.

Figures 10 and 11 show our QMC results. In Fig. 10, we
demonstrate the expected scaling by showing the susceptibil-
ity as a function of T /TK for fixed T /�R �i.e., “slices” of the
function f in Eq. �26� are shown�. A wide variety of bare
parameters are used in order to map out the full crossover,
and a good data collapse is found. Note that in the low-
temperature limit, the universal function for 
N� even is sub-
stantially different from that for 
N� odd.

One technical point concerns the determination of TK: we
expect that TK is not affected by finite-size effects �in the
absence of mesoscopic fluctuations�—it is determined by the
mean density �, the bandwidth D, and the coupling J in the
same way as the “bulk problem.” Indeed, this is explicitly
verified in Refs. 25 and 26. However, for practical numerical
purposes the two-loop perturbative formula TK

pert

=D�J�e−1/J� works only approximately for J��0.20, and so
we need to fit TK numerically in this regime. Since the over-
all scale of the Kondo temperature is arbitrary, we set TK

fit

=TK
pert for J�=0.19. Having fixed this value, we can then

obtain TK
fit for all other couplings by choosing it to get the

best data collapse in Fig. 10. If we were truly in the pertur-
bative regime, this extracted value would always agree well
with the perturbative formula. The comparison between TK

fit

and TK
pert is made in the inset of Fig. 10. As expected, for

stronger couplings there are deviations from the perturbative

value. After this fit, there are no further free parameters used
to analyze the data.

While the way the data is presented in Fig. 10 is conve-
nient for demonstrating the universal scaling �26�, it is more
natural to present the data for fixed values of TK /�R since
this corresponds to a fixed geometry or Hamiltonian. This is
done in Fig. 11. The curves for odd and even 
N� agree for
T /�R�0.2. For lower temperature, the susceptibility satu-
rates for 
N� odd, while it shows the expected Curie law for

N� even. When scaled by TK �panel �b��, the curves for both
parities follow the bulk universal curve as temperature de-
creases until they separate from each other when T /�R
�0.2.

D. Limiting regimes and interpolations for T™�R

To close this section, we come back to the limiting behav-
iors of the susceptibility discussed earlier. We show in detail
how the interpolation between them takes place, as well as
the relation between the results for the canonical and the
grand-canonical ensembles. Figure 12 shows our QMC re-
sults yet in another way: for fixed T /�R=0.1 but over the
whole transition regime of TK /�R and for both ensembles.
As expected, the results from the canonical ensemble also
satisfy the scaling ansatz. We see moreover that the weak-
and the strong-coupling limits of the canonical QMC data are
reasonable: it is in good agreement with expressions �22� for
the weak-coupling regime and tends to the bulk zero-
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temperature limit f��0� for large TK /�R. �Note, however, that
the numerics were not pushed as deep into the limiting re-
gimes as for �EST in Fig. 9�.

The strong dependence of the crossover behavior on the
parity is unexpected. The odd case has a featureless transi-
tion and reaches the large TK /�R limit from below. In con-
trast, the susceptibility in the even case overshoots the large
TK /�R value and then approaches f��0� from above. As the
even and the odd canonical results are so different, this pro-
vides an excellent test of the connection between the canoni-
cal and the grand-canonical results discussed in Sec. V B: the
grand-canonical result in the even case agrees with the aver-
age of the two canonical results �dashed-dotted line, green
online�. As a consequence, the grand-canonical susceptibility
for even 
N� differs considerably from the even N canonical
result even for fairly large TK /�R.

For weak coupling, although the two expressions in Eq.
�22� appear quite different, they lead to similar numerical
values for a very large range of T /�R and in particular for
the value of 0.1 used in Fig. 12. As a consequence, the ca-
nonical and the grand-canonical data in the odd case do not
differ very much in the weak-coupling regime. Note however
that this is somewhat emphasized here by the fact that TK�loc
is plotted rather than simply the susceptibility itself.

VI. CONCLUSIONS

Our focus in this paper has been on the many-body spec-
trum of a finite-size Kondo system. We have in mind a “mag-
netic impurity”—either a real one or an effective one formed
by a small quantum dot—coupled to a finite fermionic res-
ervoir �Fig. 1�. Such a system can certainly be made with
current technology; indeed, using quantum dots, a tunable
connection between the small dot �S� and reservoir �R� could
be made, allowing a direct investigation of the parametric
evolution of properties as function of the coupling. The em-
phasis throughout the paper is on experimentally observable
consequences.

We start with a theorem for the ground-state spin of the
combined R-S system. Because a crossing of the ground state
is forbidden, this can be obtained from simple perturbation
theory—the result for different cases is given in Table I. The
theorem is a straightforward extension of the classic theo-
rems of Mattis43 and Marshall.44

A schematic picture of the spectrum of low-lying states as
a function of the coupling J can be constructed using pertur-
bation theory and plausibility arguments. Figures 5 and 6
show results for the screened and the underscreened cases,
respectively. In this respect we are greatly aided by having a
perturbation theory available not only at weak coupling but
also at strong coupling �Nozières’ Fermi-liquid theory�.

The first observable property that we focus on is the non-
linear I-V curve of such an R-S system. Using a rate equation
approach, we find the differential conductance as a function
of the bias voltage for a number of cases �Figs. 7 and 8�, with
certain simplifying assumptions, so that the identification of
the different transitions is clear. The key result is that the
splitting with magnetic field combined with the magnitude of
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dI /dV can be used to deduce the spin of the low-lying ex-
cited states. Thus an experiment could obtain the information
needed to compare with the theoretical schematic picture.

The second observable that we treat is the magnetic sus-
ceptibility; in the low-temperature limit, this is simply re-
lated to the low-lying states of the system. We study the
general behavior of both the impurity and the local suscep-
tibilities, finding that they are markedly different. An exten-
sive example illustrates the general features: a quantum
Monte Carlo calculation yields results for the singlet-triplet
energy gap �impurity susceptibility� and the local suscepti-
bility in the clean Kondo box model in which the levels are
equally spaced and all levels couple to the impurity with the
same amplitude. Results in Figs. 9–12 show the expected
universality in this model, the strong even-odd effects, and
the difference between using the canonical and the grand-
canonical ensembles.

Clearly the finite-size spectrum of engineered many-body
systems is a rich area for future experiments. We hope that
our schematic arguments plus results for two observable
properties will persuade researchers to undertake them.
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APPENDIX: MARSHALL’S THEOREM

Theorem. If a Hermitian matrix H and a basis set ����
satisfy two conditions,

�i� 
���H����	0 for ��� and
�ii� for every pair � and �, 
���Hn�����0 for at least one

integer n,
then the ground state of H is unique �i.e., nondegenerate�.
We prove the theorem in a few steps:
Step I. First, we prove that if the conditions above are

satisfied, then the following simple result is true: if ��f�����
is a ground state, then so is ���f������. To show this, con-
sider the following “Perron-Frobenius” inequality:

�
�,�

�f���f��
���H���� � �
�,�

f�f�
���H���� . �A1�

Note that the two sides of the inequality differ only for terms
with ���. All such terms on the left-hand side are negative
because of condition �i� above, while on the right-hand side
the sign may be positive, depending on the sign of f�; hence,
the inequality holds. Physically, the right and the left sides of
the inequality are, in fact, the expectation values of the en-
ergy in the ground state ��f����� and in ���f������, respec-
tively. Since the expectation value of the Hamiltonian in the
ground state is always the lowest, ���f������ must also be a
ground state.

Step II. We now show that any ground state described by
f� must have f��0. For convenience we separate H=HD
+HOD, where HD and HOD are the diagonal and off-diagonal
parts of H with respect to the basis ����. In this language the
Schrödinger equation expressed for the states ��f����� and
���f������ becomes


���HD����f� − �
�

�
���HOD�����f� = EGf�, �A2�


���HD�����f�� − �
�

�
���HOD������f�� = EG�f�� , �A3�

where EG is the ground-state energy. These two equations
combine to give

��
���HD���� − EG�f�� = �
���HD���� − EG��f�� . �A4�

Note, however, that 
���HD����−EG�0, because ���� can-
not have a lower energy expectation value than the ground
state. Thus, f��0 follows.

Step III. The next step is to use condition �ii� from the
theorem to show that the stricter condition f��0 holds. This
is most easily seen in Eq. �A2�: if f�1

=0 for one �1, then,
using condition �ii�, all f� must be zero. Since this cannot be
the case, all f��0. Thus, combining with the result of step
II, we conclude that f��0.

Step IV. We have thus shown that every ground state of H
has a positive definite expansion in the basis set ����. Since
there cannot be two simultaneously orthogonal and positive
definite vectors, the ground state of H must be nondegener-
ate. This proves the theorem.
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